

Preliminary Laboratory Studies to Quantify the Effect of Plant Branches on Longitudinal Dispersion

Finna Fitriana, Ian Guymer, and Virginia Stovin University of Sheffield, United Kingdom

International School of Hydraulics 20 - 23 May 2025 • Radocza / near Cracow • Poland

Previous studies on solute transport in vegetated channels often use simplified cylinder arrays, which fail to capture the complex hydrodynamics caused by realistic plant structures.

Realistic Artificial Vegetation

Switching from rigid cylinder arrays to realistic plant forms: (a) 6 branches, (b) 4 branches, (c) 2 branches, (d) single stem, and (e) 8 mm cylinder.

Methodology

Tracer measurements using Cyclops sensors

1D Advection-Dispersion Equation (ADE)

$$C(x_2,t) = \int_{\tau=-\infty}^{\infty} \frac{C(x_1,t)U}{\sqrt{4\pi D_x \overline{t}}} \exp\left(-\frac{U^2(\overline{t}-t+\tau)^2}{4D_x \overline{t}}\right) d\tau$$

Optimized Dx and U through curve fitting.

Validation: checked mass balance to assess recovery and mixing.

Results

Dx increases with velocity and vegetation density; denser setups show stronger dispersion, while sparse or cylinder setups show lower Dx.

Results

Manning's n decreases with velocity; denser vegetation has consistently higher n values.

Conclusions

- Vegetation density significantly affects longitudinal dispersion, with higher branch density enhancing Dx and channel mixing.
- Dispersion increases with flow velocity, strongest in dense vegetation; cylindrical and zero-branch setups show minimal impact.
- Manning's *n* decreases with velocity but stays consistently higher in denser setups.
- Findings highlight vegetation's role in solute transport and provide a foundation for future modelling.

Thank You!

ffitriana1@sheffield.ac.uk

